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Surface-induced nematic ordering and the localization of a twisted distortion in a nematic cell
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A Landau—de Gennes phenomenological model is used to analyze the coupling between the surface-induced
scalar order parameter variation and the orientational ordering in a nematic slab, considering also nonplanar
distortions where the twist angle can vary. The results show that a weak variatién additional to that
predicted for a pure twist deformation by the Frank elastic theory can appear. This variation can be either
globally spread over the whole sample or localized to a subsurface region of thickness comparable to the
nematic correlation length. In the former ca$e results from a global tilt angle variation, while in the latter
it is caused by a variation of the scalar order param8&telose to the surface. In contrast to the recently
analyzedS variation-induced subsurface deformation of the tilt arigke, e.g., G. Skaget al, Phys. Rev. E
57, 1780(1998], an intrinsic (chiral nemati¢ or confinement-induced global twist is needed to yield the
localized Sw effect.[S1063-651X98)06312-0

PACS numbd(s): 61.30.Cz, 61.30.Gd

In the bulk of a nematic liquid crystal sample the degreelying at z= +d/2, being parallel to they plane. The nem-

of molecular ordering is given by the scalar order parametegtic director can then be parametrized a%ﬁ(z)

S and dependsbesides on material constants of the liquid =[sing(2)cosw(2),sing(2)sinw(z),cosp(2)], #(z) being the
crysta) on temperature. If the nematic sample is confined,eu,]g|e betweem and thez axis (the tilt angle and w(2) the
e.g., by a solid substrate, the valueS#t the interface &)  azimuthal angle defined with respect to thexis (the twist

can be different from its bulk values) and a variation o5 anglg. In the framework of the Landau—de Gennes phenom-
occurs in a layer whose thickness is of the order of the NeManological theory the free energy density expansion up to the
atic correlation lengtt¢ [1]. In the framework of the phe- second order in first director component and scalar order

nomenological Landau—de Gennes theory such a variation @farameter derivatives is giveneglecting biaxiality by

S can give rise to a subsurface deformation of the nematic

director field if the splay and bend elastic constants are dif-

ferent from the twist one, as it has been considered by sev-f=fy(S)+f1(¢,S')+f(p,¢", 0,5+ f3(,¢",S,T),
eral authord2-5]. In all these analyses only planar elastic (2)
distortions of the nematic director field have been dealt with,

thereby neglecting the twist distortion, and the subsurface . R .
deformation was present in the tilt angle profile. The aim ofWhere the prime denotes a derivative with respedt tdere
this paper is to extend the analysis performed in Reffor

the strong anchoring limit to nonplanar distortions. In par- 1 1 1
ticular, we would like to examine whether a localized sub- fo(S) = Ea(T—T*)SZ— §BS°"+ ch4 2
surface twist deformation similar to that reported for the tilt

angle in, e.g.[5] can be observed and further to explore also

the global (delocalized coupling between the tilt and the s the free energy density of the unperturbed uniform nematic

twist angle in a twisted nematic slab. Analyses allowing alsqjrector field @>0, B>0, C>0, andT* are material con-
nonplanar distortions have been performed in &S], but  stantg and

were used to investigate substrate-induced orientational

phase transitions. An indication for strong localized variation

in molecular orientation that can be explained in terms of a 3

variation of S[2,3], or both S and biaxiality[8], has been f1(¢,S")= ZLl

found also experimentally. It should be mentioned that ques-

tions about subsurface director deformations were first raised

within the second-order elastic theory and that these defoiis the source of “polar” intrinsic anchorinfgp], the constants

mations had been predicted later also by several pseudomb,>0 andL, being related to the elastic constants=0

lecular modeldgfor a brief review see, e.g., Rgb] and the  represents the one-constant approximation in which the splay

references thereinbut no effects of the order variation were and bend elastic constants are equal to the twist constant

taken into account. Recently, an analysis allowing also nemF1,5]. In fact, L, is a sum of two phenomenological param-

atic density variations has been perfornjégl eters[5], but since in a planar geometry only their sum ap-
Let us consider a nematic slab of thicknesswhere thez  pears in the free energy we decided to reduce it to a single

axis is oriented along the surface normal and the surfaces aparameter. Further,
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+sirf ¢
is the classic Frank elastic term and

3
fa(¢,¢',5,8" )=~ gLosin2¢)¢’SS )

gives rise to thes variation-induced subsurface deformation
of the tilt angle ¢ [5]. Note that the free energy density

depends o', appearing in the Frank terni4), but not on
w itself. If we considered chiral nematic liquid crystals that

form a structure twisted spontaneously already in the unper-
turbed ground state, the only changes in the free energy den-

sity appear in the Frank ternd). Then, apart from an
w-independent term, a term linear &1 has to be added and
the f, contribution to the free energy density is stillinde-

pendent. Considering chiral nematic liquid crystals would
not change the analysis substantially; therefore, it will be
restricted only to nonchiral nematic liquid crystals where the

twist is imposed by confining surfaces.

In the strong anchoring case the total free energy per unit

surface is given by
dr2

f_dlzf[¢(Z).¢’(Z),w’(Z),S(Z),S’(Z)]dZ-

Minimizing Eqg. (6) with respect t0S(z), ¢(z), and w(z)
yields the Euler-Lagrange equatio(iSLE’s)

F (6)

of d of Jf d of

ﬁ_d_zrqﬁ’zo’ do dZ go’

of

IS dz g

()

Since inf there is no explicit dependence en (also for
chiral nematic liquid crysta)s the last of the above ELE’s
can be rewritten as

of  of,
—— = ——=gq=const. (8
o' o’
Taking into account Eq4), we find that
9 L
azzszsin%{ L+ 72c0§¢] o', 9

which, once integrated with respectzover the whole slab,
results in

dr dz

w(d2)— o(—di2)= af
—d/zgs2
2

L+ %co&b)sinzqs
(10

If we choosew(d/2)=w(—d/2), it follows thate=0 must
hold and from Eq.(9) also thatw'=0 everywhere in the
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FIG. 1. S(z) profiles in a twisted nematic slab with strong an-
choring. ¢(*d/2)=45°, w(—d/2)=0°, w(d/2)=45°, S,
~0.375,S,=0.35 (top figure or Sy=0.4 (bottom figure, andL,
=L,, 0, and—L; (curvesa, b, andc, respectively. The sample
thickness equals lum, a=0.13x 10° J/nP K, B=1.6x 10 J/nT,
C=3.9x10° J/n?, T-T*=0.4 K, andL,;=10"** N.

with respect tow). This case is examined in R¢&], where

in detail the coupling between the tilt angfeand the scalar
order parameteS§ is investigated. The results show that if
there is a variation o that is localized to a thin subsurface
layer of thickness- £, it is accompanied by a variation gf
localized to a layer of the same thickness. If, however,
w(d/2)# w(—d/2), =0 no longer holds and the twist de-
formation is present. For such a twisted nematic slab the
ELE’s (7) must be solved numerically. As weak anchoring
would only reduce the deformation, here we concentrate our
attention on the strong anchoring boundary conditions,
where the actual surface values®f¢, andw cannot devi-

ate from those imposed by the substrate.

Let us first considerS profiles in a twisted nematic
sample. The scalar order parameter always relaxes monotoni-
cally from the surface valug, to the bulk valueS,, which
can be calculated by minimizing the free energy giverf py
[Eg. (2)] alone. The variation occurs over a distance charac-
terized by the nematic correlation lengthé
~+L1/a(T—T%*) [1] (see Fig. 1 and is hence localized to a
thin subsurface layer. For our choiceafL,, andT—T* its
thickness is about 20 nn% profiles in the presence of the
twist deformation ¢+ 0) are very similar to those reported
in Ref. [5], where the twist deformation was absent (
=0). In general, any variation abp or w affectsS profiles
only very weakly since the free energy contributions associ-
ated with the elastic deformatiorf, f,, andf3) are con-
siderably smaller than the homogeneous ofhg.(

On the other hand, in a twisted nematic slab there is quite

sample. Hence, in this case the twist deformation is abserat significant change in tilt angle profile&z) in comparison

and the director is lying in a plariéhe problem is degenerate

to the nontwisted case. These profiles show a considerable
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FIG. 3. w(2) profiles in a twisted and strongly anchored nematic
slab with a delocalized variation ab. S;=0.4, while all other
parameters are the same as in Fig. 1. In the inge) in the sub-
surface region is shown. The deviatiém from the linear solution
(11) spreads through the whole sample. ProfilesSp+ 0.35 differ
only negligibly from those plotted here.

appearing, e.g., wheg(—d/2)# ¢(d/2) or even in a sym-

04  -02 0 0.2 0.4 metric case whereé varies due to the twist deformation, give
z/d rise to deviation®w(z) that are global as wellsee Fig. 3.

FIG. 2. ¢(2) profiles in a twisted nematic slab with strong an- ~ On the contrary, a localized variation &) induces a

choring. The same parameters as in Fig. 1 have been @ed. Variation of w that is localized. Let us now explore this
=0.35 (top figure and S,= 0.4 (bottom figure. “subsurface deformation” irw in more detail and compare

it to the one appearing in thé(z) profile. Let us, for the

variation of ¢ that spreads over the whole slédee Fig. 2  sake of clarity, omit the$(z) dependence by setting
even in the symmetric anchoring case in whigk—d/2) ¢(dI2)= ¢(—d/2)=90°. In this case there is no source of
= ¢(d/2). The source of this delocalized deformation is thethe subsurface deformation i since thef; term (5) van-
coupling betweer’ and¢ in the Frank elastic terrf, [Eq.  ishes. Numerical solutions of the ELE(Z) confirm indeed
(4)]. Namely, since the’? term, which is nonzero when the that then ¢(z)=90°=const holds throughout the whole
twist deformation is present, always gives a positive fressample. Putting nowp(z) =90° into Eq.(9) yields
energy contribution, the proportionality factor appearing in
front of ’? must be as small as possible, i.e., foy=0, , 2a
=L, (as chosen for profiles plotted in Fig), 2¢| must de- 9L, () (12)
crease. However, this decrease is compensated by the
term, which is also present if, and gives a positive free
energy contribution as soon @s varies. Note that because
the ratio of the proportionality constants belonginga®? I
and ¢'2, respectively, is larger wheln,<0, in that case the S(Z)zsb_ﬁw (13
decrease ing| can be larger than fdr,=0 (just the oppo- coshd/2n)
site holds forL,>0). Further, it should be noticed that for
L,#0 the coupling betwee’ andS’ described by thé;  representing the localized variation 8fclose to the confin-
term yields the localize® variation-induced subsurface de- ing walls with an amplitudéd S=S,— S, and a characteristic
formation in¢(z) that behaves similarly as in the nontwisted length\ that is to be characterized by the nematic correlation
case studied in Ref5]. length. The integration of Eq12) is particularly simplified

Let us finally consider alsa(z) profiles. These can be if we further assumg¢AS|<S,,S,. The resultingw(z) pro-
calculated by integrating E@9) with respect taz. For sim-  file is then given approximately by
plicity, suppose firsS and ¢ to be constant throughout the

Assume for the moment that ti#%z) profile is modeled by

sample. The resulting profile is then a linear functionzof AS sinh(z/\)
e ro  2P2NG Coshdin
1 w(Z)~w(—d/2)+7+Aw AS .
z
w(2)=w(—-d2)+Aw at 3l (11) d+4)\§tanr(d/2)\)

(14
where Aw= w(d/2)— w(—d/2) is proportional to the con-
stanta introduced in Eq(8). If, however, eitherd (with S The ratio sinh#/\)/cosh@/2\) appearing in Eq(14) is non-
= const, the Frank solutigror both ¢ andS are allowed to  zero only in the boundary layers and hence represents a lo-
vary with z, deviationséw(z) from the linear profile given calized subsurface variation of the twist angle, whose ampli-
by Eg.(11) may occur. For example, global variationsf tude equals
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taking into accounk <d in the last expression. The approxi-
matew(z) profile can be close to the substrates+{(=+d/2) 0.2
simplified to w(Z2)~w(—d/2)+Aw(z/d+1/2)F Swp{l '
—exd(xz—d2)/\]}.

This simple calculation proves the existence of a localized 0-0‘5 -0495  -049  -0485 -048
variation also in thew profile. Its amplitude is rather small z/d
with respect to the overall variation ab, e.g., for Aw o _ _
—45°, A\~0.0d (d=1um), AS~0.025, andS,~0.375 it FIG. 4. w(z) profiles in the subsurface region of a twisted nem-

atic slab with a localized variation o8 ¢(£d/2)=90°, S,
~0.375,A5~0.025, 0, and-0.025(the top, middle, and bottom
curves, respectively w(—d/2)=0°, w(d/2)=45°, andL,=0 [for

is Swy=0.06°. For comparison, the actual profile in the
slab geometry can be derived also from solving the E(#s

forl; ¢(*d/2)=90° and tr:]e abO\I/e plgrametelfﬁee Fig. 4 ¢(=d/2)=90° the problem is degenerate with respect to the value
The (,"(Z) dependencg Shows a ,Oca IZe.d de oima%r(;) of L,]. The profiles cross in the middle of the sample and exhibit a
that is added to the linear solutid¢l) with AS=0, exhib-  gimjjar pehavior at the opposite side, the top curve, e.g., now cor-

iting a functional dependence similar to that predicted aNaresponding to the negative value &5. The values fom, B, C, T
|yt|Ca”y by Eq (14) The ampl'tude Oﬁw(z), 5(1)0, |S Of the _T*, andLl are the same as in F|g 1.

same order of magnitude as estimated above. However, the
dw effect could become easily measurable considering a Fyrther note that in the Frank terni,) there is also a

very thin highly twisted nematic celld~100 nm, Ao coupling betweeBand¢' that is mathematically equivalent
~2m) using strongly ordering substrateA§|~0.1) and  {g that betweerS and ’. In samples where a delocalized
agjusting the temperature close to the nematic-isotropic traryeformation ing is already present, e.g., in nonsymmetric
sition, wherex~10 nm. samples with¢(—d/2)# ¢(d/2), this can, in principle, in-
Note again that the source of the subsurface variation ofjyce an additional localized variation it Then the addi-
the twist angledw(2) is the Frank elastic termf¢) and that  tjonal variation has to be added to the one already analyzed
the origin of thisw variation is different from that respon- 5 Ref.[5], where this kind of deformation was not discussed

sible for the variation ofp in Ref.[5] (in that case the source sjnce only symmetric samples were considered.
was thef 5 term). Both subsurface andw variations follow

from a localized variation o, but the latter can exist only if We wish to acknowledge the financial support of the Min-

a global distortion inw is already presernisince dw<Aw), istry of Science and Technology of Sloveriarant No. J1-
while for the former no deformation i is necessary to 7470 and of the European UnidiProject INCO Copernicus
ensure its existence. No. ERBCIC15CT960744
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