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Surface-induced nematic ordering and the localization of a twisted distortion in a nematic cell
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A Landau–de Gennes phenomenological model is used to analyze the coupling between the surface-induced
scalar order parameter variation and the orientational ordering in a nematic slab, considering also nonplanar
distortions where the twist anglev can vary. The results show that a weak variationdv additional to that
predicted for a pure twist deformation by the Frank elastic theory can appear. This variation can be either
globally spread over the whole sample or localized to a subsurface region of thickness comparable to the
nematic correlation length. In the former casedv results from a global tilt angle variation, while in the latter
it is caused by a variation of the scalar order parameterS close to the surface. In contrast to the recently
analyzedSvariation-induced subsurface deformation of the tilt angle@see, e.g., G. Skacˇej et al., Phys. Rev. E
57, 1780 ~1998!#, an intrinsic ~chiral nematic! or confinement-induced global twist is needed to yield the
localizeddv effect. @S1063-651X~98!06312-0#

PACS number~s!: 61.30.Cz, 61.30.Gd
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In the bulk of a nematic liquid crystal sample the degr
of molecular ordering is given by the scalar order parame
S and depends~besides on material constants of the liqu
crystal! on temperature. If the nematic sample is confin
e.g., by a solid substrate, the value ofS at the interface (S0)
can be different from its bulk value (Sb) and a variation ofS
occurs in a layer whose thickness is of the order of the n
atic correlation lengthj @1#. In the framework of the phe
nomenological Landau–de Gennes theory such a variatio
S can give rise to a subsurface deformation of the nem
director field if the splay and bend elastic constants are
ferent from the twist one, as it has been considered by s
eral authors@2–5#. In all these analyses only planar elas
distortions of the nematic director field have been dealt w
thereby neglecting the twist distortion, and the subsurf
deformation was present in the tilt angle profile. The aim
this paper is to extend the analysis performed in Ref.@5# for
the strong anchoring limit to nonplanar distortions. In p
ticular, we would like to examine whether a localized su
surface twist deformation similar to that reported for the
angle in, e.g.,@5# can be observed and further to explore a
the global ~delocalized! coupling between the tilt and th
twist angle in a twisted nematic slab. Analyses allowing a
nonplanar distortions have been performed in Refs.@6,7#, but
were used to investigate substrate-induced orientatio
phase transitions. An indication for strong localized variat
in molecular orientation that can be explained in terms o
variation of S @2,3#, or both S and biaxiality @8#, has been
found also experimentally. It should be mentioned that qu
tions about subsurface director deformations were first ra
within the second-order elastic theory and that these de
mations had been predicted later also by several pseudo
lecular models~for a brief review see, e.g., Ref.@5# and the
references therein!, but no effects of the order variation wer
taken into account. Recently, an analysis allowing also n
atic density variations has been performed@9#.

Let us consider a nematic slab of thicknessd where thez
axis is oriented along the surface normal and the surfaces
PRE 581063-651X/98/58~6!/8024~4!/$15.00
e
r

,

-

of
ic
f-
v-

,
e
f

-
-
t

o

al
n
a

s-
ed
r-
o-

-

re

lying at z56d/2, being parallel to thexy plane. The nem-
atic director can then be parametrized asnW 5nW (z)
5@sinf(z)cosv(z),sinf(z)sinv(z),cosf(z)#, f(z) being the
angle betweennW and thez axis ~the tilt angle! andv(z) the
azimuthal angle defined with respect to thex axis ~the twist
angle!. In the framework of the Landau–de Gennes pheno
enological theory the free energy density expansion up to
second order in first director component and scalar or
parameter derivatives is given~neglecting biaxiality! by

f 5 f 0~S!1 f 1~f,S8!1 f 2~f,f8,v8,S!1 f 3~f,f8,S,S8!,
~1!

where the prime denotes a derivative with respect toz. Here

f 0~S!5
1

2
a~T2T* !S22

1

3
BS31

1

4
CS4 ~2!

is the free energy density of the unperturbed uniform nem
director field (a.0, B.0, C.0, andT* are material con-
stants! and

f 1~f,S8!5
3

4
L1H 11

L2

2L1
S cos2f1

1

3D J S82 ~3!

is the source of ‘‘polar’’ intrinsic anchoring@5#, the constants
L1.0 andL2 being related to the elastic constants;L250
represents the one-constant approximation in which the s
and bend elastic constants are equal to the twist cons
@1,5#. In fact, L2 is a sum of two phenomenological param
eters@5#, but since in a planar geometry only their sum a
pears in the free energy we decided to reduce it to a sin
parameter. Further,
8024 © 1998 The American Physical Society
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f 2~f,f8,v8,S!5
9

4
L1S2H S 11

L2

2L1
Df82

1sin2fS 11
L2

2L1
cos2f Dv82J ~4!

is the classic Frank elastic term and

f 3~f,f8,S,S8!52
3

8
L2sin~2f!f8SS8 ~5!

gives rise to theS variation-induced subsurface deformatio
of the tilt anglef @5#. Note that the free energy densi
depends onv8, appearing in the Frank term (f 2), but not on
v itself. If we considered chiral nematic liquid crystals th
form a structure twisted spontaneously already in the un
turbed ground state, the only changes in the free energy
sity appear in the Frank term~4!. Then, apart from an
v-independent term, a term linear inv8 has to be added an
the f 2 contribution to the free energy density is stillv inde-
pendent. Considering chiral nematic liquid crystals wou
not change the analysis substantially; therefore, it will
restricted only to nonchiral nematic liquid crystals where
twist is imposed by confining surfaces.

In the strong anchoring case the total free energy per
surface is given by

F5E
2d/2

d/2

f @f~z!,f8~z!,v8~z!,S~z!,S8~z!#dz. ~6!

Minimizing Eq. ~6! with respect toS(z), f(z), and v(z)
yields the Euler-Lagrange equations~ELE’s!

] f

]S
2

d

dz

] f

]S8
50,

] f

]f
2

d

dz

] f

]f8
50,

] f

]v
2

d

dz

] f

]v8
50.

~7!

Since in f there is no explicit dependence onv ~also for
chiral nematic liquid crystals!, the last of the above ELE’s
can be rewritten as

] f

]v8
5

] f 2

]v8
5a5const. ~8!

Taking into account Eq.~4!, we find that

a5
9

2
S2sin2fH L11

L2

2
cos2fJ v8, ~9!

which, once integrated with respect toz over the whole slab,
results in

v~d/2!2v~2d/2!5aE
2d/2

d/2 dz

9

2
S2S L11

L2

2
cos2f D sin2f

.

~10!

If we choosev(d/2)5v(2d/2), it follows thata50 must
hold and from Eq.~9! also thatv850 everywhere in the
sample. Hence, in this case the twist deformation is ab
and the director is lying in a plane~the problem is degenerat
t
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e
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with respect tov!. This case is examined in Ref.@5#, where
in detail the coupling between the tilt anglef and the scalar
order parameterS is investigated. The results show that
there is a variation ofS that is localized to a thin subsurfac
layer of thickness;j, it is accompanied by a variation off
localized to a layer of the same thickness. If, howev
v(d/2)Þv(2d/2), a50 no longer holds and the twist de
formation is present. For such a twisted nematic slab
ELE’s ~7! must be solved numerically. As weak anchorin
would only reduce the deformation, here we concentrate
attention on the strong anchoring boundary conditio
where the actual surface values ofS, f, andv cannot devi-
ate from those imposed by the substrate.

Let us first considerS profiles in a twisted nematic
sample. The scalar order parameter always relaxes mono
cally from the surface valueS0 to the bulk valueSb , which
can be calculated by minimizing the free energy given byf 0
@Eq. ~2!# alone. The variation occurs over a distance char
terized by the nematic correlation lengthj
;AL1 /a(T2T* ) @1# ~see Fig. 1! and is hence localized to
thin subsurface layer. For our choice ofa, L1 , andT2T* its
thickness is about 20 nm.S profiles in the presence of th
twist deformation (aÞ0) are very similar to those reporte
in Ref. @5#, where the twist deformation was absent (a
50). In general, any variation off or v affectsS profiles
only very weakly since the free energy contributions asso
ated with the elastic deformation (f 1 , f 2 , and f 3) are con-
siderably smaller than the homogeneous one (f 0).

On the other hand, in a twisted nematic slab there is q
a significant change in tilt angle profilesf(z) in comparison
to the nontwisted case. These profiles show a consider

FIG. 1. S(z) profiles in a twisted nematic slab with strong a
choring. f(6d/2)545°, v(2d/2)50°, v(d/2)545°, Sb

'0.375,S050.35 ~top figure! or S050.4 ~bottom figure!, andL2

5L1 , 0, and2L1 ~curvesa, b, andc, respectively!. The sample
thickness equals 1mm, a50.133106 J/m3 K, B51.63106 J/m3,
C53.93106 J/m3, T2T* 50.4 K, andL1510211 N.
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variation off that spreads over the whole slab~see Fig. 2!
even in the symmetric anchoring case in whichf(2d/2)
5f(d/2). The source of this delocalized deformation is t
coupling betweenv8 andf in the Frank elastic termf 2 @Eq.
~4!#. Namely, since thev82 term, which is nonzero when th
twist deformation is present, always gives a positive f
energy contribution, the proportionality factor appearing
front of v82 must be as small as possible, i.e., forL250,
6L1 ~as chosen for profiles plotted in Fig. 2!, ufu must de-
crease. However, this decrease is compensated by thef82

term, which is also present inf 2 and gives a positive free
energy contribution as soon asf varies. Note that becaus
the ratio of the proportionality constants belonging tov82

andf82, respectively, is larger whenL2,0, in that case the
decrease inufu can be larger than forL250 ~just the oppo-
site holds forL2.0). Further, it should be noticed that fo
L2Þ0 the coupling betweenf8 andS8 described by thef 3
term yields the localizedS variation-induced subsurface de
formation inf(z) that behaves similarly as in the nontwiste
case studied in Ref.@5#.

Let us finally consider alsov(z) profiles. These can be
calculated by integrating Eq.~9! with respect toz. For sim-
plicity, suppose firstS and f to be constant throughout th
sample. The resulting profile is then a linear function ofz,
i.e.,

v~z!5v~2d/2!1DvS z

d
1

1

2D , ~11!

where Dv5v(d/2)2v(2d/2) is proportional to the con
stanta introduced in Eq.~8!. If, however, eitherf ~with S
5 const, the Frank solution! or bothf andS are allowed to
vary with z, deviationsdv(z) from the linear profile given
by Eq. ~11! may occur. For example, global variations off

FIG. 2. f(z) profiles in a twisted nematic slab with strong a
choring. The same parameters as in Fig. 1 have been usedS0

50.35 ~top figure! andS050.4 ~bottom figure!.
e

appearing, e.g., whenf(2d/2)Þf(d/2) or even in a sym-
metric case wheref varies due to the twist deformation, giv
rise to deviationsdv(z) that are global as well~see Fig. 3!.

On the contrary, a localized variation ofS(z) induces a
variation of v that is localized. Let us now explore thi
‘‘subsurface deformation’’ inv in more detail and compare
it to the one appearing in thef(z) profile. Let us, for the
sake of clarity, omit thef(z) dependence by settin
f(d/2)5f(2d/2)590°. In this case there is no source
the subsurface deformation inf since thef 3 term ~5! van-
ishes. Numerical solutions of the ELE’s~7! confirm indeed
that then f(z)590°5const holds throughout the whol
sample. Putting nowf(z)590° into Eq.~9! yields

v85
2a

9L1S2~z!
. ~12!

Assume for the moment that theS(z) profile is modeled by

S~z!5Sb2DS
cosh~z/l!

cosh~d/2l!
, ~13!

representing the localized variation ofS close to the confin-
ing walls with an amplitudeDS5Sb2S0 and a characteristic
lengthl that is to be characterized by the nematic correlat
length. The integration of Eq.~12! is particularly simplified
if we further assumeuDSu!Sb ,S0 . The resultingv(z) pro-
file is then given approximately by

v~z!'v~2d/2!1
Dv

2
1Dv

z12l
DS

Sb

sinh~z/l!

cosh~d/2l!

d14l
DS

Sb
tanh~d/2l!

.

~14!

The ratio sinh(z/l)/cosh(d/2l) appearing in Eq.~14! is non-
zero only in the boundary layers and hence represents a
calized subsurface variation of the twist angle, whose am
tude equals

FIG. 3. v(z) profiles in a twisted and strongly anchored nema
slab with a delocalized variation off. S050.4, while all other
parameters are the same as in Fig. 1. In the insetv(z) in the sub-
surface region is shown. The deviationdv from the linear solution
~11! spreads through the whole sample. Profiles forS050.35 differ
only negligibly from those plotted here.
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dv05

2l
DS

Sb

d14l
DS

Sb
tanh~d/2l!

Dv'2
l

d

DS

Sb
Dv, ~15!

taking into accountl!d in the last expression. The approx
matev(z) profile can be close to the substrates (z→6d/2)
simplified to v(z)'v(2d/2)1Dv(z/d11/2)7dv0$1
2exp@(6z2d/2)/l#%.

This simple calculation proves the existence of a localiz
variation also in thev profile. Its amplitude is rather sma
with respect to the overall variation ofv, e.g., for Dv
545°, l'0.01d (d51mm), DS'0.025, andSb'0.375 it
is dv0'0.06°. For comparison, the actualv profile in the
slab geometry can be derived also from solving the ELEs~7!
for f(6d/2)590° and the above parameters~see Fig. 4!.
The v(z) dependence shows a localized deformationdv(z)
that is added to the linear solution~11! with DS50, exhib-
iting a functional dependence similar to that predicted a
lytically by Eq. ~14!. The amplitude ofdv(z), dv0 , is of the
same order of magnitude as estimated above. However
dv effect could become easily measurable considerin
very thin highly twisted nematic cell (d;100 nm, Dv
;2p) using strongly ordering substrates (uDSu;0.1) and
adjusting the temperature close to the nematic-isotropic t
sition, wherel;10 nm.

Note again that the source of the subsurface variation
the twist angledv(z) is the Frank elastic term (f 2) and that
the origin of thisv variation is different from that respon
sible for the variation off in Ref. @5# ~in that case the sourc
was thef 3 term!. Both subsurfacef andv variations follow
from a localized variation ofS, but the latter can exist only i
a global distortion inv is already present~sincedv}Dv),
while for the former no deformation inf is necessary to
ensure its existence.
ys
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Further note that in the Frank term (f 2) there is also a
coupling betweenSandf8 that is mathematically equivalen
to that betweenS and v8. In samples where a delocalize
deformation inf is already present, e.g., in nonsymmet
samples withf(2d/2)Þf(d/2), this can, in principle, in-
duce an additional localized variation inf. Then the addi-
tional variation has to be added to the one already analy
in Ref. @5#, where this kind of deformation was not discuss
since only symmetric samples were considered.

We wish to acknowledge the financial support of the M
istry of Science and Technology of Slovenia~Grant No. J1-
7470! and of the European Union~Project INCO Copernicus
No. ERBCIC15CT960744!.

FIG. 4. v(z) profiles in the subsurface region of a twisted ne
atic slab with a localized variation ofS; f(6d/2)590°, Sb

'0.375,DS'0.025, 0, and20.025 ~the top, middle, and bottom
curves, respectively!, v(2d/2)50°, v(d/2)545°, andL250 @for
f(6d/2)590° the problem is degenerate with respect to the va
of L2#. The profiles cross in the middle of the sample and exhib
similar behavior at the opposite side, the top curve, e.g., now
responding to the negative value ofDS. The values fora, B, C, T
2T* , andL1 are the same as in Fig. 1.
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